Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests

نویسندگان

  • Lin Cao
  • Nicholas C. Coops
  • Txomin Hermosilla
  • John L. Innes
  • Jinsong Dai
  • Guanghui She
چکیده

An accurate estimation of total biomass and its components is critical for understanding the carbon cycle in forest ecosystems. The objectives of this study were to explore the performances of forest canopy structure characterization from a single small-footprint Light Detection and Ranging (LiDAR) dataset using two different techniques focusing on (i) 3-D canopy structural information by discrete (XYZ) LiDAR metrics (DR-metrics), and (ii) the detailed geometric and radiometric information of the returned waveform by full-waveform LiDAR metrics (FW-metrics), and to evaluate the capacity of these metrics in predicting biomass and its components in subtropical forest ecosystems. This study was undertaken in a mixed subtropical forest in Yushan Mountain National Park, Jiangsu, China. LiDAR metrics derived from DR and FW LiDAR data were used alone, and in combination, in stepwise regression models to estimate total as well as above-ground, root, foliage, branch and trunk biomass. Overall, the results indicated that three sets of predictive models performed well across the different subtropical forest types (Adj-R = 0.42–0.93, excluding foliage biomass). Forest type-specific models (Adj-R = 0.18–0.93) were generally more accurate than the general model (Adj-R = 0.07–0.79) with the most accurate results obtained for coniferous stands (Adj-R = 0.50–0.93). In addition, LiDAR metrics related to vegetation heights were the strongest predictors of total biomass and its components. This OPEN ACCESS Remote Sens. 2014, 6 7111 research also illustrates the potential for the synergistic use of DR and FW LiDAR metrics to accurately assess biomass stocks in subtropical forests, which suggest significant potential in research and decision support in sustainable forest management, such as timber harvesting, biofuel characterization and fire hazard analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Above- and Below-Ground Biomass Components in Subtropical Forests Using Small-Footprint LiDAR

In order to better assess the spatial variability in subtropical forest biomass, the goal of our study was to use small-footprint, discrete-return Light Detection and Ranging (LiDAR) data to accurately estimate and map aboveand below-ground biomass components of subtropical forests. Foliage, branch, trunk, root, above-ground and total biomass of 53 plots (30 × 30 m) were modeled using a range o...

متن کامل

Correlating the Horizontal and Vertical Distribution

Light detection and ranging (LiDAR) has been widely used to estimate forest biomass. In this study, we aim to further explore this capability by correlating horizontal and vertical distribution of LiDAR data with components of biomass in a Picea crassifolia forest. Airborne small footprint full-waveform data were decomposed to acquire higher density point clouds. We calculated LiDAR metrics at ...

متن کامل

Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR

The spatial distribution of plant diversity and biomass informs management decisions to maintain biodiversity and carbon stocks in tropical forests. Optical remotely sensed data is often used for supporting such activities; however, it is difficult to estimate these variables in areas of high biomass. New technologies, such as airborne LiDAR, have been used to overcome such limitations. LiDAR h...

متن کامل

A Comparison of Forest Biophysical Parameters Assessed with Lidar Data on Three Platforms: Ground, Airborne, and Satellite

7 Lidar remote sensing from three platforms – ground, airborne, and spaceborne – has 8 the capability to acquire direct three-dimensional measurements of the forest canopy that 9 are useful for estimating a variety of forest inventory parameters, including tree height, 10 volume, and biomass, and also for deriving useful information for characterizing wildlife 11 habitat or forest fuels. 12 The...

متن کامل

Estimation of tropical forest structural characteristics using large-footprint lidar

Quantification of forest structure is important for developing a better understanding of how forest ecosystems function. Additionally, estimation of forest structural attributes, such as aboveground biomass (AGBM), is an important step in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014